
Separation of Privilege 1
ID: 357-BSI | Version: 7 | Date: 11/12/09 3:55:20 PM

Separation of Privilege
Sean Barnum, Cigital, Inc. [vita3]

Michael Gegick, Cigital, Inc. [vita4]

Copyright © 2005 Cigital, Inc.

2005-12-06 L4 / D/P, L5

A system should ensure that multiple conditions are met before granting permissions to an object. Checking
access on only one condition may not be adequate for strong security. If an attacker is able to obtain one
privilege but not a second, he or she may not be able to launch a successful attack. If a software system
largely consists of one component, the idea of having multiple checks to access different components cannot
be implemented. Compartmentalizing software into separate components that require multiple checks for
access can inhibit an attack or potentially prevent an attacker from taking over an entire system.

Detailed Description Excerpts
According to Saltzer and Schroeder [Saltzer 75] in "Basic Principles of Information Protection" on page 9:

Separation of privilege: Where feasible, a protection mechanism that requires two keys to unlock
it is more robust and flexible than one that allows access to the presenter of only a single key. The
relevance of this observation to computer systems was pointed out by R. Needham in 1973. The
reason is that, once the mechanism is locked, the two keys can be physically separated and distinct
programs, organizations, or individuals made responsible for them. From then on, no single accident,
deception, or breach of trust is sufficient to compromise the protected information. This principle
is often used in bank safe-deposit boxes. It is also at work in the defense system that fires a nuclear
weapon only if two different people both give the correct command. In a computer system, separated
keys apply to any situation in which two or more conditions must be met before access should be
permitted. For example, systems providing user-extendible protected data types usually depend on
separation of privilege for their implementation.

According to Bishop [Bishop 03] in Chapter 13, "Design Principles," in the "Principle of Separation of

Privilege" section on pages 347-348:9

This principle is restrictive because it limits access to system entities.

Definition 13-6, The principle of separation of privilege states that a system should not grant
permission based upon a single condition.

This principle is equivalent to the separation of duty principle discussed in Section 6.1 [of Computer
Security]. Company checks for over $75,000 must be signed by two officers of the company. If either
does not sign, the check is not valid. The two conditions are the signatures of both officers.

Similarly, systems and programs granting access to resources should do so when more than one
condition is met. This provides a fine grained control over the resource, and additional assurance that
the access is authorized.

Example 1. On Berkeley-based versions of the UNIX operating system, users are not allowed to
change from their account to the root account unless two conditions are met. The first is that the user
knows the root password. The second is that the user is in the wheel group (the group with GID 0).
Meeting either condition is not sufficient to acquire root access. Meeting both conditions is required.

According to NIST [NIST 01] in Section 3.3, "IT Security Principles," on page 12:

Limit or Contain Vulnerabilities.

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)
4. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/345-BSI.html (Gegick, Michael)
9. All rights reserved. It is reprinted with permission from Addison-Wesley Professional.

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/345-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Separation of Privilege 2
ID: 357-BSI | Version: 7 | Date: 11/12/09 3:55:20 PM

Design systems to limit or contain vulnerabilities. If a vulnerability does exist, damage can be
limited or contained, allowing other information system elements to function properly. Limiting and
containing insecurities also helps to focus response and reconstitution efforts to information system
areas most in need.

According to Viega and McGraw [Viega 02] in Chapter 5, "Guiding Principles for Software Security," in the

"Principle 5: Compartmentalize" section on pages 102-104:10

The basic idea behind compartmentalization is to minimize the amount of damage that can be done to
a system by breaking the system into as few units as possible while still isolating code that has security
privileges. This same principle explains why submarines are built with many different chambers, each
separately sealed. If a breach in the hull causes one chamber to fill with water, the other chambers will
not be affected. The rest of the ship can keep its integrity, and people can survive by making their way
to parts of the submarine that are not flooded. Unfortunately, this design doesn't always work, as the
Kursk disaster shows.

Another common example of the compartmentalization principle shows up in prison design. Prison
designers try hard to minimize the ability for large groups of convicted criminals to get together.
Prisoners don't bunk in barracks, they bunk in cells of up to two. Even when they do congregate, say in
a mess hall, that's the time and place where other security measures are increased to help make up for
the large rise in risk.

In the computer world, it's a lot easier to point out examples of poor compartmentalization than it is
to find good examples. The classic example of how not to do it is the standard UNIX privilege model,
where interesting operations work on an "all or nothing" basis. If you have root privileges, you can
do anything you want anywhere on the system that you want. If you don't have root access, there are
significant restrictions. As we mentioned, you can't bind to ports under 1024 without root access.
Similarly, you can't access many operating system resources directly (for example, you have to go
through a device driver to write to a disk, you can't deal with it directly).

Given a device driver, if an attacker exploits a buffer overflow in the code, the attacker can make raw
writes to disk, and mess with any data in the kernel's memory. There are no protection mechanisms
to prevent that. Therefore, it is not possible to support a log file on a local hard disk that can never
be erased, so that you can keep accurate audit information up until the time of a break-in. Attackers
will always be able to circumvent any driver you install, no matter how well it mediates access to the
underlying device.

On most platforms, it is not possible to protect one part of the operating system from others. If one
part is compromised, then everything is hosed. Very few operating systems do compartmentalize.
Trusted Solaris is a well-known one, but it is unwieldy. In those operating systems with
compartmentalization, operating system functionality is broken up into a set of roles. Roles map to
entities in the system that need to provide particular functionality. One role might be a LogWriter role,
which would map to any client that needs to save secure logs. This role would be associated with a
set of privileges. For example, a LogWriter may have permission to append to its own log files, but
never to erase from any log file. Perhaps only a special utility program will be given access to the
LogManager role, which would have complete access over all the logs. Standard programs would not
have access to this role. Even if an attacker breaks a program and ends up in the operating system, the
attacker still won't be able to mess with the log files unless the log management program gets broken
too.

Complicated "trusted" operating systems are not all that common. One reason is that this kind of
functionality is difficult to implement and hard to manage. Problems like dealing with memory
protection inside the operating system provide challenges that have solutions, but not ones that are
simple to effect.

10. All rights reserved. It is reprinted with permission from Addison-Wesley Professional.

Separation of Privilege 3
ID: 357-BSI | Version: 7 | Date: 11/12/09 3:55:20 PM

The compartmentalization principle must be used in moderation. If you segregate each little bit of
functionality, then your system will become completely unmanageable.

"What Goes Wrong"

According to McGraw and Viega [McGraw 03c]:13

Changing the root directory in Unix processes doesn't work unless you follow up.

The chroot() system call provides a standard way to compartmentalize Unix processes. This call
changes the root directory for all subsequent file operations, establishing a "virtual" root directory.
Unfortunately, chroot() usually doesn't work well in practice.

One flaw is that only root can use it. Often, programmers will allow the program to continue to run
without totally dropping root privileges—a bad idea. When you run a process chroot(), the process
should immediately set both the effective user ID (EUID) and UID to a less-privileged user to
eliminate the window of vulnerability. Also, chroot() does not work exactly as advertised unless you
immediately follow it with a call to chdir("/"). Without that, an attacker may be able to use relative
paths to access the rest of the file system.

Obviously, chroot can be a maintenance nightmare. Make sure you avoid putting any setuid root
program in a chroot environment. When such programs are available in a jail, the jail is likely to be
broken from the inside out.

Separation of privilege is defined differently by Howard and LeBlanc [Howard 02]. We include their
definition to show the importance of having multiple processes working together with different levels of
privileges. This excerpt is from Chapter 3, "Security Principles to Live By," in the "Separation of Privilege"

section on pages 61-62:14

An issue related to using least privilege is support for separation of privilege. This means removing
high privilege operations to another process and running that process with the higher privileges
required to perform its tasks. Day-to-day interfaces are executed in a lower privileged process.

In June 2002, a severe exploit in OpenSSH v2.3.1 and v3.3, which ships with versions of Apple
Mac OS X, FreeBSD and OpenBSD, was mitigated in v3.3 because it supports separation of
privilege by default. The code that contained the vulnerability ran with lower capabilities because
the UsePrlvilegeSeparation option was set in sshd_config. You can read about the issue at http://
www.openssh.com/txt/preauth.adv.

Another example or privilege separation is Microsoft Internet Information Services (lIS) 6, which
ships in Windows .NET Server. Unlike lIS 5, it does not execute user code in elevated privileges by
default. All user mode HTTP requests are handled by external worker processes (named w3wp.exe)
that run under the Network Service account, not under the more privileged Local System account.
However, the administration and process management process, inetinfo.exe, which has no direct
interface to HTTP requests, runs as Local System.

The Apache Web Server is another example. When it starts up, it starts the main Web server process,
httpd, as root and then spawns new httpd processes that run as the low privilege nobody account to
handle the Web requests.

References

[Bishop 03] Bishop, Matt. Computer Security: Art and Science. Boston, MA: Addison-
Wesley, 2003.

13. All rights reserved. It is reprinted with permission from CMP Media LLC.
14. From Writing Secure Code, Second Edition (0-7356-1722-8) by Microsoft Press. All rights reserved.

http://www.openssh.com/txt/preauth.adv
http://www.openssh.com/txt/preauth.adv

Separation of Privilege 4
ID: 357-BSI | Version: 7 | Date: 11/12/09 3:55:20 PM

[Howard 02] Howard, Michael & LeBlanc, David. Writing Secure Code, Second Edition.
Redmond, WA: Microsoft Press, 2002.

[McGraw 03c] McGraw, Gary & Viega, John. "Divide and Conquer." Software Development.
CMP Media LLC, April, 2003.

[NIST 01] NIST. Engineering Principles for Information Technology Security. Special
Publication 800-27. US Department of Commerce, National Institute of Standards
and Technology, 2001.

[Saltzer 75] Saltzer, Jerome H. & Schroeder, Michael D. "The Protection of Information
in Computer Systems," 1278-1308. Proceedings of the IEEE 63, 9 (September
1975).

[Viega 02] Viega, John & McGraw, Gary. Building Secure Software: How to Avoid Security
Problems the Right Way. Boston, MA: Addison-Wesley, 2002.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

